MAYBURY PRIMARY SCHOOL

Calculation Policy

Produced: Spring 2023
Review Due: Spring 2025
engage enrich excel academies

Maybury Primary School
 Believe. Achieve. Succeed.

This calculation policy has been written in line with the 2014 mathematics programmes of study. The methods that are used are taught during maths lesson throughout their time at Maybury primary, using the steps as a 'ladder' process. Once they are confident with each method, they will move onto the next step, developing their efficiency with arithmetic. Teacher assessment will be used to decide when the children are ready to move onto the next calculation step.

The ladders use a three-step process:

1. Concrete: using physical objects and learning tools to aid their understanding.
2. Pictorial: using and drawing pictures and diagrams to aid their understanding.
3. Abstract: more formal methods, which are used once they have understood how the method works.

Aims of the policy:

- To ensure consistency and progression in our approach to calculation.
- To ensure children develop efficient methods for each operation.
- To ensure children are using these methods accurately to support their learning in mathematics.

Pictures and diagrams have been used to show examples of ways in which this can look in the classroom.

Addition (+)	Objectives	Concrete	Pictorial	Abstract	
Progression	Combing two set of numbers to make a total		Finding a number of objects and then Step 1 of a bar.	Using pictures to represent objects and then counting them as a whole.	

Maybury Primary School
 Believe. Achieve. Succeed.

			\square 8 1	
Step 2	Starting with the largest number and counting on to find the total.	Starting with the largest number (without counting those beads) count on to find the total.	Use a number line to count on in ones Finding the largest number on a number line or number square and counting on until you reach the total.	$5+3=8$ Using a mental method for addition, placing the largest number (5) in their head and counting on 3.
Step 3	Expanded column method without regrouping	Using resources to show the amount of tens and one of each number and then pushing them together in order to add them.	Use place value grids to show both numbers and then adding the one together first, followed by the tens.	Starting with adding the ones column, moving onto the tens.

Maybury Primary School
 Believe. Achieve. Succeed.

Maybury Primary School
 Believe. Achieve. Succeed.

Maybury Primary School
 Believe. Achieve. Succeed.

Subtraction (-) Taking away	Objectives	Concrete	Pictorial	Abstract
Progression				
Step 1	Taking away in ones	Place the object down in a line and subtract your number from the total. We started off with 4 and we took away 2 , leaving us with 2 . Therefore $4-2=2$.	Cross out drawn objects to show what has been taken away. $4-2=2$	$4-2=2$
Step 2	Counting back	$13-4$ Start with 12 and take away 4. Count how many you have left.	Count back on a number line or number track	$13-4=9$

Maybury Primary School
 Believe. Achieve. Succeed.

Step 3	Using chunking to count back	Place your objects into a place value gird subtract the number of ones and tens. Count how many you have left to find your answer.	Draw a number line, start with the biggest number and count back in tens and ones Use a number square to count back in tens and then ones	Partition the numbers using place value to ease mental subtraction. 1. $57-20=37$ 2. $37-3=34$ $57-23=34$
Step 4	Expanded column method with no regrouping	Place your objects onto the place value gird. Subtract the ones then the tens. Calculate your answer from what you have left.	Draw out your place value grid and place in the numbers partitioning into place value. Subtract by crossing the representations out. Calculate your answer by what you have left in your place value grid.	Expand your subtraction using place value. Start with your ones and subtract the bottom number from the top number.

Maybury Primary School
 Believe. Achieve. Succeed.

Step 5	Expanded column method with regrouping	Step 1: Start with place your counters into the place value grid. Step 2: Start with your ones and subtract the bottom number from the top number. Step 3: If you top number is smaller, you need to regroup. Move a ten to your ones column so that you have 14 ones. Now complete your subtraction.	Follow the same process as the concrete but using draws to represent the numbers. Cross out to show you have subtracted.	$274-48=226$ Follow the same process using expanded column method. Always starting with your ones and regrouping if needed.

Maybury Primary School
 Believe. Achieve. Succeed.

Maybury Primary School
 Believe. Achieve. Succeed.

Subtraction (-) Finding the difference	Objectives	Concrete	Pictorial	Abstract
Progression				
Step 1	Find the difference between two numbers by counting in ones.	Children to start off at the smaller number and count on to the larger number. The numbers in between is the difference.	Children can use number lines to start at the smaller number and count on to the larger number. The amount of jumps is the difference.	Finding the difference between 6 and 2 . $\begin{aligned} & -2=6 \\ & 6-2=4 \end{aligned}$

Maybury Primary School
 Believe. Achieve. Succeed.

Maybury Primary School
 Believe. Achieve. Succeed.

Multiplication (X)	Objectives	Concrete	Pictorial		Abstract
Progression					
Step 1	To introduce the 'times' using repeated addition (finding 'lots of' a number).	"How many lots of 2 do we have?"	Starting at 0 an multiple i.e. 2	unt in jumps of the e are multiplying by 2.	3 lots of 2 $2+2+2=6$
Step 2	To use arrays to represent multiplication	Placing physical resources aligned correctly to represent multiplication i.e. 3 lots of 2 or 2 lots of 3 .	$2 \times 3=$ 3×2	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$ 00 00 00	$2 \times 3=6$ Using their knowledge of repeated addition and times tables to calculate the answer mentally.

Maybury Primary School
 Believe. Achieve. Succeed.

\begin{tabular}{|c|c|c|c|c|}

\hline \& \& \& \begin{tabular}{l}
$3 \times 2=6$

$2 \times 3=6$

Drawing objects to represent multiplication ensuring they are aligned correctly to show the given multiplication.
\end{tabular} \&

\hline Step 3 \& To use grid method as a method of multiplication \& Use physical objects to represent tens and one. i.e. 14×3 - there is 14 three times to aid multiplication. \& Same method as concrete but using drawings to represent numbers. \& | $14 \times 3=42$ |
| :--- |
| Step 1: Draw a grid (the size will depend on your number for 2-digit numbers you need 3 columns). |
| Step 2: Partition your numbers using place value. |
| Place your multiplier into the second row on the first column. |
| Step 3: Multiply each number and place the answer into the correct place in the grid. |

\hline
\end{tabular}

Maybury Primary School
 Believe. Achieve. Succeed.

Maybury Primary School
 Believe. Achieve. Succeed.

Division (\div)	Objectives	Concrete	Pictorial	Abstract
Progression				
Step 1	To be able to understan ding sharing as a method of division	I had 8 cubes and I shared them between 2 people.	$\begin{array}{cc\|cc} 48 & 88 & 88 & 88 \\ 8 & 8 \\ 8 & 8 & 88 & 88 \\ 98 & 8 & 8 & 8 \\ 8 \div 2=4 & 8 \end{array}$	$8 \div 2=4$
Step 2	To be able to understan d grouping as a method of division.	Creating equal sized groups from the total (10). i.e. 'How many groups of two can you make? $10 \div 2=5$ (because you can make 5 groups of 2).	Using pictures or a number line to count equal groups.	$10 \div 2=5$

Maybury Primary School
 Believe. Achieve. Succeed.

Step 3	To be able	N/A		$12 \div 4=3$
	to divide on a number line using chunking in the form of repeated addition		Using counters to represent 5s.	Starting at 0, count on in chunks of that multiple. Write the corresponding multiplication statement to add up at the end.

Maybury Primary School
 Believe. Achieve. Succeed.

Maybury Primary School
 Believe. Achieve. Succeed.

Step 6	To conso	short and long division in a varie	texts including problem solving.	

